VOC's Alternate Test Methods 5/21/2007

Where are We?
Where are We going?
Alan Viets

WPHA/CLA Technical Team

Arlean Rohde – ExxonMobil

Doug Linscott – Dow AgroSciences

Alan Viets – Bayer CropScience

Background

- 31st year in Ag Industry
- Member of ISC, ASTM, DAPF, active with CIPAC and FAO
- Chairman of 1998 ASTM Symposium on Formulations and Applications
- Chaired the Physical Properties working group of the Spray Drift Task Force
- Worked 1994-1998 in the Bayer AG Formulation Development in Germany

Pensky-Martens Flash Point Tester ASTM D93

	Experimental	
	mass loss % 115C	mass loss % 40C
	80 Minutes	480 minutes
Aromatic 200	100	44.61
dodecylpyrrolidone	4.88	
octylpyrrolidone	52.4	
N,N dimethyl octanamide, decanamide	99.4	
N,N dimethyl decanamide	65	5
Propylene carbonate	100	42.75
Cyclohexanone	99.3	100
N-methylpyrrolidone	100	
THFA	100	100
Propylene glycol methyl ether	100	
Methyl Laurate	100	
propylene glycol	100	
Glycerin	7.5	

Our Path Forward became Clear

Combine factors from soil and plant adsorption/absorption, kinetics, plant intercept, soil degradation and reactivity in the <u>agricultural environment</u> to model the potential to produce low level ozone.

Key Environmental Fate Processes

The Most Important Solvent

- Without question aromatic solvents have always been the most widely used solvents for Agricultural Formulations.
- Solvents make EC's the most efficacious if plant or insect penetration is important.

Soil Adsorption/Absorption Round Robin

- This ASTM Round Robin is currently underway using high organic and low organic soil.
- Industry, Government and University Labs are participating in the USA and Europe.
- We should have results of this Round Robin in the fall of 2007.

Round Robin Participants	Soil Round Robin	Plant Foliage Round Robin
Peter Baur, BCS Frankfurt		X
Peter Green, UC Davis	X	(X)
Laura McConnell, USDA Beltsville, MD	X	(X)
Alan Viets, BCS Kansas City, MO	X	(X)
Dave Ferguson, Huntsman Corp.	X	X
Chip Collins, Stepan	X	
Arlean Rhode, Martin Krevalis - Exxon	X	X
Thomas Kroehl, BASF, DAPF, Germany	X	X
Greg Lindner, Uniqima	X	
Doug Linscott, Dow, soil, maybe foliage	X	(X)
Victor Chow, Syngenta USA, soil, likely foliage	X	(X)
Gunnar Fent, RLP AgroScience GmbH Institute for AgroEcology, Germany	X	(X)

Solvent Application Rate

- Historically Product application rates were seldom higher than 1 quart per acre.
- About half of the product by weight was solvent.
- Assuming 475 grams per acre, divided by 43,560 gives a solvent rate of .01 gram per square foot.

Retention of Solvent A in Clay Granules, Preliminary Testing

From Bayer EC Formulation

Open Media Bottle @ 40°C Convection Oven

Method: Solvent A.

Varian Star HPLC

Croft and Shafer

Foliar Round Robin

- In the coming months we will be organizing a foliar round robin.
- Testing will be performed with the same blank EC in water applied to two different types of plant foliage: easily wet leaves like cotton and difficult to wet leaves like cereal grain.
- Testing will be done with no wind and 5mph at a temperature of 20C.

Michael H. Hiatt U.S. Fnvironmental Protection Agency, National Exposure Research Laboratory Environmental Sciences Division. P.O. Box 93478, Las Vegas, Nevada 89193-3478 and David R. Youngman and Joseph R. Donnelly Lockheed Environmental Systems & Technologies Co. 980 Kelly Johnson Dr., Las Vegas, NV 89119 [Note: minor content and formatting differences exist between this web version and the published version]

Figure 1. Vacuum distillation apparatus.

Round Robin Participants	Soil Round Robin	Plant Foliage Round Robin
Peter Baur, BCS Frankfurt		X
Peter Green, UC Davis	X	(X)
Laura McConnell, USDA Beltsville, MD	X	(X)
Alan Viets, BCS Kansas City, MO	X	(X)
Dave Ferguson, Huntsman Corp.	X	X
Chip Collins, Stepan	X	
Arlean Rhode, Martin Krevalis - Exxon	X	X
Thomas Kroehl, BASF, DAPF, Germany	X	X
Greg Lindner, Uniqima	X	
Doug Linscott, Dow, soil, maybe foliage	X	(X)
Victor Chow, Syngenta USA, soil, likely foliage	X	(X)
Gunnar Fent, RLP AgroScience GmbH Institute for AgroEcology, Germany	X	(X)

Pure Appl. Chem., Vol. 72, No. 11, pp. 2199–2218, 2000. © 2000 IUPAC

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

DIVISION OF CHEMISTRY AND THE ENVIRONMENT COMMISSION ON AGROCHEMICALS AND THE ENVIRONMENT*

FOLIAR INTERCEPTION AND RETENTION VALUES AFTER PESTICIDE APPLICATION. A PROPOSAL FOR STANDARDIZED VALUES FOR ENVIRONMENTAL RISK ASSESSMENT

(Technical Report)

Prepared for publication by

J. LINDERS¹, H. MENSINK¹, G. STEPHENSON², D. WAUCHOPE³, AND K. RACKE⁴

¹RIVM-CSR, P.O. Box 1, NL-3720 BA Bilthoven, The Netherlands; ²University of Guelph, Guelph, ON N1G 2W1, Canada; ³USDA-Agricultural Research Service, P.O. Box 748, Tifton, GA 31794, USA; ⁴Dow Agrosciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA

Current Status

- Vapor pressure exemptions are not acceptable to DPR for Ag products.
- We recommended establish a tiered approach to VOC testing.
- We asked DPR to allow ASTM to develop and test the suggested adsorption/absorption soil and foliar test methods.
- We plan to account for VOC adsorption/absorption when establishing atmospheric availability for a solvent in formulation based on the above methods.
- TGA results are predictable based on the composition of the Formulation.

Conclusions

- California DPR accepted our proposal to work on a Solvent basis instead of a Formulation basis. This allows us to do in depth studies on Solvents.
- VOC's from Pesticides have been reduced due to DOT and Warehouse regulations.
- Alternative methods look promising and reflect reality better that the current TGA method.

Once again, Our Path Forward

Combine factors from soil and plant adsorption/absorption, kinetics, plant intercept, soil degradation and reactivity in the California <u>agricultural environment</u> to model the potential to produce low level ozone.